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Abstract

The problem of mapping underground cavities from surface seismic measurements is investigated within the
framework of a regularized boundary integral equation (BIE) method. With the ground modeled as a uniform elastic
half-space, the inverse analysis of elastic waves scattered by a three-dimensional void is formulated as a task of mini-
mizing the misfit between experimental observations and theoretical predictions for an assumed void geometry. For an
accurate treatment of the gradient search technique employed to solve the inverse problem, sensitivities of the predictive
BIE model with respect to cavity parameters are evaluated semi-analytically using an adjoint problem approach and a
continuum kinematics description. Several key features of the formulation, including the rigorous treatment of the
radiation condition for semi-infinite solids, modeling of an illuminating seismic wave field, and treatment of the prior
information, are highlighted. A set of numerical examples with spherical and ellipsoidal cavity geometries is included to
illustrate the performance of the method. It is shown that the featured adjoint problem approach reduces the com-
putational requirements by an order of magnitude relative to conventional finite-difference estimates, thus rendering the
three-dimensional elastic-wave imaging of solids tractable for engineering applications.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Remote sensing of cavities embedded in a semi-infinite solid via elastic waves is a topic of considerable
interest in mechanics and engineering owing to its relevance to a number of applications ranging from non-
destructive material testing to medical diagnosis, oil prospecting and underground object detection. In the
context of seismic exploration, a comprehensive three-dimensional mapping of subterranean structures is
typically associated with the interpretation of a large number (often thousands) of motion measurements
via finite-difference elastodynamic models which are inherently based on domain discretization (e.g. Plessix
et al., 1999). In contrast, this investigation is concerned with problems where detailed mapping of un-
derground openings (such as defense facilities) is required and only a few measurements can be made,
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usually on the ground surface. In such instances, the boundary integral equation (BIE) formulations, which
provide a direct mathematical link between the observed waveforms and the geometry of a hidden object,
can be used to effectively compensate for the limited field data (see Colton and Kress, 1983, for acoustic
problems).

The problem of inverse scattering (Bui, 1994), of interest in this study, has been the subject of extensive
mathematical research; among numerous reviews on the topic, on may mention Colton and Kress (1992),
Colton et al. (2000) and Pike and Sabatier (2002) as examples spanning the past decade. In the context of
impenetrable scatterers (such as voids examined herein), various numerical solution procedures, often
based on the BIE method, have been proposed for the problem. Most existing treatments of this type,
however, are limited to the inversion of electromagnetic or acoustic far-field waveforms in infinite media
(e.g. Bonnet, 1995a). Few exceptions dealing with the inverse scattering of elastic waves include crack
identification in infinite elastic solids by Kress (1996) (two-dimensional treatment in the frequency domain)
and Nishimura (1997) (three-dimensional analysis in the time domain). Aimed at bridging such gap
between the elastic wave scattering theory and its applications, the focus of this investigation is the
development of an analytical and computational framework for the identification of cavities via an
elastodynamic BIE method, for the more complex and realistic case involving three-dimensional elastic
wave propagation in a semi-infinite solid. By means of a well-defined incident seismic field and a set of
surface motion sensors used to monitor elastic waves scattered by the cavity, the inverse problem is reduced
to the minimization of a cost function representing the misfit between the field observations and their
predictions for an assumed void location. For a precise treatment of the featured body and surface wave
fields, the predictive model used in this study (Pak and Guzina, 1999) is based on the fundamental solution
for a uniform elastic half-space. In the pursuit of the gradient search technique employed by the inverse
solution, necessary derivatives of the cost function are evaluated via an adjoint problem approach which,
besides the matter of elegance, offers a superior computational performance relative to finite-difference
sensitivity estimates. This is accomplished by revisiting the semi-analytical treatment proposed for infinite
media in Bonnet (1995a). To complete a rigorous theoretical foundation for the imaging problem, included
is an explicit treatment of the radiation condition for semi-infinite solids; a topic that has, despite its
central role in the application of BIE methods to forward and inverse scattering problems involving
unbounded media, eluded previous studies. A numerical example where an ellipsoidal cavity is identified
from synthetically generated, noise-polluted field measurements is included to illustrate the proposed
method.

2. Problem statement

To establish a fundamental framework for the BIE-based identification of underground cavities by
elastic waves, the focus of this study is the inverse scattering problem for an isotropic, homogeneous elastic
half-space housing an internal void. With reference to a Cartesian frame {O;¢&,, &, &}, the half-space
Q={(¢&, &, &)|E > 0} is characterized by the Lamé’s constants A and u, mass density p, and is bounded
on top by the free surface S = {(¢,, &, ;)¢ = 0}. The cavity inside the half-space occupies a simply
connected finite region Qc C Q bounded by a smooth closed surface I'. For further reference, let Q~ denote
the semi-infinite region surrounding the cavity, i.e. the complement to Qc in the half-space so that
Q = Q\ (QcUT), and let n denote the normal to I" directed towards the exterior of Q. With reference to
Fig. 1, the cavity is “illuminated” by a time-harmonic seismic source f, with the resulting surface motion
monitored over a finite set of slightly embedded control points é = x™ (m = 1,2,...,M). To discuss condi-
tions at infinity, an auxiliary surface I'y = £z N Q is introduced, where X is the sphere of radius R centered
at the origin. The respective subsets of Q, Q™ and S which are bounded by I'y will be denoted as Q, 2, and
Sk, with an implicit assumption that R is sufficiently large so that Qc C Q.
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Fig. 1. Illumination of an underground cavity by elastic waves.

2.1. Forward problem

For a systematic treatment of the inverse scattering problem, it is necessary first to introduce the as-
sociated forward problem wherein the response of a semi-infinite solid Q= due to prescribed seismic loading
is to be determined for a known cavity location and geometry. With the time factor ¢’ omitted henceforth
for brevity, the forward solution, herein denoted as the total field u(&, ), can be formally defined via an
elastodynamic state [u, ] which satisfies the field equations

V-6+f=—pou,
c=C:g EeQ, (1)
e=1(Vu+ V'),
subject to the boundary conditions
t=n-6=0, £clUS. (2)

In (1) and (2), f is the time-harmonic body force distribution representing the seismic source: V = V (eg.
Malvern, 1969); ¢ stands for the surface traction, and C denotes the isotropic elasticity tensor, i.e.

C= L L+ 2ul, (3)

where I, (n = 2,4) is the symmetric nth order identity tensor.

2.2. Inverse problem

With reference to the testing configuration outlined in Fig. 1, the inverse problem of cavity identification
can be set forth as a task of resolving the void shape and location by interpreting the observed response of
the excavated half-space Q- due to prescribed (i.e. known) seismic excitation. For this class of remote
sensing problems, the inverse solution can be formulated by seeking the minimizer I" of the cost function

) =J(u f) + ¥(T), 4)

where J represents the misfit between experimental observations (#°*) and theoretical, i.e. forward pre-
dictions (u) for an assumed void geometry I', and ¥ is a non-negative set function used to include an a
priori information on the shape and location of the cavity. Upon introducing Q.,s C 2~ as a finite control
volume enclosing the entirety of measurement stations, J(u; f) can be written in general terms as
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Jsf) = [ oluteo) —u (¢ o) dc, (5)
Qobs

where ¢ is a weighted measure of distance between u and u°™.
In this investigation, (5) is specialized to the least-squares format with a discrete set of M observation
points by taking

M (6)
W=WE=> WE—x"exe, ij=123

where J stands for the three-dimensional Dirac delta function; e; is the unit vector in the x;-direction; over-
bar symbol denotes the complex conjugation, and W} are suitable constants chosen so that they form a
Hermitian and positive definite matrix for m = 1,2,..., M. In (6) and thereafter, the Einstein summation
convention is assumed over the spatial coordinate indices. For consistency of the ensuing formulation, W
are assumed to have a physical dimension of force per length.

Assuming that the prior information about the cavity under consideration can be synthesized in terms of
a closed surface I'” bounding a fixed finite region ¢ C Q, the penalty function ¥ in (4) can be compactly
formulated in terms of the Hausdorff distance H (Edgar, 1990) between sets I and I” as

Y(I) = OH*(I,I7), H(I',I7) = max{h(I', I"),h(I", T}, (7)
where ¥ is a scalar weighting parameter reflecting the quality of prior knowledge, and

h(I', I7) = max min{(& — ¢) - (£ - {)}'/*. 8)
gl gerr
In (8), function 4(I", I'?) is called the directed Hausdorff distance from I to I'”; it locates the point & € I' that
is farthest from its nearest neighbor ¢ in I'”, and measures ||& — {|| for these two points.

In situations where the prior information on the cavity geometry (e.g. size, depth) is associated with
varying degrees of confidence, however, a more refined measure of the misfit between I and I'” may be
required. To address the problem, it is useful to invoke the Lebesgue measure in %° (i‘e. J dQE) together
with the collection of additive set functions [¢;dQ: and [ &,¢&;dQ: (i,j = 1,2,3). With such quantities, a
resolute alternative to (7) can be introduced via the quadratic form

—_—

Y =54-4¢) G a-4), 9)

where G is a real symmetric positive definite matrix of weighting coefficients, ¢ = ¢(I'), ¢ = ¢(I"”), and

fgc de, s=0
ql_ofgc ¢, dQ, s=1,2,3

() = (qo0,q1,---,99), qs(I') = ch iji] (& —q/')de@ s=4.5.6 (10)
Jac Hfi?lﬁ('fj —-q;)dQ;, 5=7.389

synthesizes the information about the volume (s = 0), centroid (1 <s < 3), and inertia tensor (4 <s<9) of
the cavity. For the ensuing developments, the entries of ¢ can be further reduced to surface integrals
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= [p&mdre, s=0
5 J; Engdre, s=1,2,3
a(1)=9 _ [ ¢ Zf;’?i}(é/ —gq;)dlr:, s=4,56 (11)

- fr 55—67[.?76 Hiflé(é/ - qj) driv § = 77 87 9

by virtue of the divergence theorem.

In view of the significant computational effort required to evaluate u for elastodynamic problems, the
cost function (4) can be minimized most effectively within the framework of gradient-based descent tech-
niques such as the quasi-Newton or conjugate gradient methods (e.g. Luenberger, 1973). In the sequel, a
systematic derivation of the necessary sensitivities of # within the framework of BIE techniques will be
described in detail.

3. Boundary integral formulation for the primary field

For the computational treatment of (1) and (2), the total displacement field # can be conveniently de-
composed as

u=u" +u5, EcQ, (12)

where #® denotes the scattered field (u® = 0 in the absence of a cavity), and uF is the fiee field defined as the
response of a cavity-free half-space 2 due to given body force distribution f. By virtue of (1), (2) and (12), it
can be shown that the scattered field itself represents an elastodynamic state, i.e. that [u5, 5] satisfies the
field equations

S _ 2.8
V-6>=—pow,

O'Szciﬂs, fEQf, (13)
1

& = 3 (Vu® + V')
and boundary conditions

=t ¢er,

=0 ¢&cs,
with the free field [, t"] assumed to be known beforehand.

To obtain an integral representation of # in terms of the boundary data, it is useful to introduce the

fundamental solution [a, #] for a semi-infinite solid Q, where @ (£, x, w) and #(&, x, w; n) are the respective
ith components of the displacement and traction vectors at & € Q due to a unit time-harmonic point force
acting at x € Q in the kth direction (see also Appendix). For the ensuing treatment, these Green’s functions
can be decomposed into a singular part [[#],, [#],] and a residual, i.e. regular component [[a),, [#],] via

iy (& x, 0) = [ (& x, )], + [ (& x, 0)], = i (& x,0) + [i; (&, x, 0)],,

izk(é X, w3 n) = [ch(éﬁ X, @; n)]l + [fzk(éa X, @; ”)]2 = if((éa X, 0; ”) + [Zf(év X, @3 n)]27
where (& x,0) and #(&, x,0;n) represent the static point-load solution for a void-free elastic half-space Q
(Guzina and Pak, 2001).

With the foregoing definitions, it can be shown (see Pak and Guzina, 1999) that the scattering problem
(1) and (2) can be reformulated in terms of the regularized (i.e. Cauchy principal value-free) BIE

(15)



1510 B.B. Guzina et al. | International Journal of Solids and Structures 40 (2003) 15051523

/F{ui(y,w) - “i(é»w)}[if(gvya (8 n)]ldFCf _/1_”1'(67 a))[ff‘(f,y, ;3 ”)]2dri +”1]:(va) = ”k(yﬂw)ﬂ
yerl, (16)

with the effects of seismic excitation, f, synthesized via the free-field term
o) = | SO Er. 0T (17)
o

given in terms of the half-space fundamental solution. It is important to observe that (16) rests on the a
priori assumption that the scattered field satisfies the generalized radiation condition

Igim / {ud (& )t (& x, ;n') — (& w;n)ik (&, x,0)}d: =0, x € Q, (18)
— Jr,
where n' is the unit normal to I'; directed towards the exterior of @, as indicated in Fig. 1. Although the
far-field requirements of type (18) are implicit to most boundary integral analyses of elastodynamic
problems involving semi-infinite domains, they have so far eluded an in-depth scrutiny. For a rigorous
pursuit of the forward scattering problem and the associated imaging task, an explicit proof of (18) is the
focus of the following section.

3.1. Generalized radiation condition

In dealing with the radiation condition for unbounded elastic media, a useful point of departure is the
Graffi’s reciprocal theorem in elastodynamics (Wheeler and Sternberg, 1968). With reference to an arbitrary
finite domain D bounded by surface 0D with outward normal ', Graffi’s theorem can be formally stated as

aD{ui(éw)fi(é, w;n') — (&, wyn)i;(&, w)} dS = /D{ﬁ(éw)ui(f, w) — (&, )fi(§, w)}dV, (19)

where [u,#] and [&, 7] are two arbitrary elastodynamic states on D associated with time-harmonic body force
fields f and f, respectively. Upon specifying D = Qg, f = 6(& — x)e;, and f = 6(&€ — y)e;, where x,y €
and e; is the unit vector in the x;-direction, (19) can be reduced to

/ {#](&, x, )t} (&,y, 0:0) = (& x, 00 )i (&, y, 0) }dT e = i (. x, 0) — i (x,y, 0),
I'z
xayEQRa j,k6{1,2,3} (20)

in terms of the fundamental solution [a,¢] for a void-free elastic half-space Q. Owing to the intrinsic
symmetry of the displacement Green’s function: &, (y, x, w) = ﬁf (x,y,®) as shown in Appendix, the right-
hand side of (20) vanishes so that

Z*(x,p;R) = | {@(& x, ) (& y,0;n) — T(E x,0)d (&, y,0;0)}dl: =0, x,p € Qp, (21)
I'r
for any fixed pair x,y € Q and R sufficiently large so that both x and y are contained within Q. It is
important to observe that taking the limit of 27 (x,y;R) as R — oo constitutes an explicit proof that the
fundamental solution itself satisfies the generalized radiation condition.
To demonstrate the validity of (18) on the basis of (21), it is instructive to represent the scattered field u®
induced by the Neumann boundary conditions (14a) via a single-layer potential (e.g. Kupradze, 1965)

ul.s(x,w) = /gj(C,w)ﬁ;(C, x,0)dl;, x€Q, (22)
r



B.B. Guzina et al. | International Journal of Solids and Structures 40 (2003) 1505-1523 1511

where g denotes an appropriate surface density over I'. On employing (22) and interchanging the order of
integration, one finds that

/ (38, ) (&, x, 03) — B(& wsnf, D)k (&, x, )} T, = / (L) 2 (xR =0, x €,
Iz r
(23)

with the latter integral vanishing by virtue of (21) and the postulate that R is sufficiently large so that Qg
contains the cavity, i.e. that

g:?R}éx,CEQR. (24)

On taking the limit of (23) as R — oo, the proof of (18) immediately follows.
In a similar fashion, it can be shown that any elastodynamic field [#, 7] in 2~ which admits the integral
representation

i(x, 0) = /1 g, o) (¢, x,0)dl; + /Q f,.(c,w)a;(c,x, 0)dQ;, xeQ, (25)

in terms of a single-layer potential with density g and a volumetric potential with density f also satisfies the
generalized radiation condition, provided that the body force distribution f is confined to a finite region
Qp C Q. Finally, it should be noted that the following identity

I;im {6:(& o;m)u, (€, 0) — u; (&, 0)§;(E, w;n')} AT : = 0, (26)
= Jr,

is valid for any two elastodynamic states [u,¢] and [, ] on Q~ which independently satisfy the generalized
radiation condition (18).

4. Differentiation with respect to shape perturbations

To investigate the effect of cavity perturbations on the cost function #, the shape Q~ is assumed to
depend on a pseudo-time parameter T through an Eulerian-type continuum kinematics description. The
reference, i.e. unperturbed configuration Q~ is conventionally associated with 7 = 0, so that the featured
domain evolution can be stated as

(e =28=0¢7)eQ (1), 120, ®E0)=¢ (27)

where & describes the “current” place of the material element d.# that occupied position ¢ in the reference
configuration. It should be noted that the choice of the geometric transformation ® (with a strictly positive
Jacobian) for a specific problem is non-unique, i.e. that a given domain evolution considered as a whole
admits infinitely many different representations of type (27). In the ensuing exposition, all pseudo-time
derivatives d(-)/dz will be implicitly taken at t = 0, i.e. the first-order effect of infinitesimal perturbations of
Q" = Q (0) will be considered.

4.1. Scalar and vector fields

Differentiation of field variables and integrals with respect to domain perturbation is a well-documented
subject (see, e.g. Petryk and Mréz, 1986 and Sokolowski and Zolesio, 1992). In what follows, several basic
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concepts and results which are relevant to the study are summarized. To this end, it is instructive to in-
troduce the initial transformation velocity

o

0(¢) = a0 (28)

=0

Considering the inherently Eulerian description f(&,7) of a field quantity / in a geometrical transforma-
tion, it is natural to define df/drt as its material (i.e. substantial) derivative at t = 0 so that

w=r- lim L{/(&,7) ~ £(£.0)) = /' +0- 9/, (29)

—0 T

where /' = 0f /0t stands for the local rate of change, i.e. partial “time” derivative with & kept fixed, and V
implies differentiation with respect to Eulerian coordinates £. Similarly, the material derivative of the
gradient of f is given by

(V> = v} — Vo - VY. (30)

4.2. Volume and surface integrals
With reference to the continuity equation (e.g. Malvern, 1969)

dv = (v - 0)dv, (31)

describing the volume evolution of a given material element d.# under geometric transformation (27), the
material derivative of a generic volume integral

1.(f,Ds7) =/D<>f(é,r)dV,

can be expressed via either of the following two statements

dl *
Aol - /D{f+fV-0}dV= /Df’dVJr/anHHdS, (32)

of the classical Reynolds formula where 6, = 0 - n.

To formulate the counterpart of (32) for surface integrals, one must allow for kernels which may be
undefined outside of a given material surface S(t). To this end, it is useful to introduce the concepts of
surface gradient (V) and surface divergence (Vy-) via

Vsf =Vf—(n-Vf)n=(fi —nf,)e. = (Dif )ei,

(33)
Vs-u=V-u—n-Vu-n= D,

which characterize the tangential variation of the respective fields along S. With such definitions, material
derivatives of the unit normal n and the differential element dS on a moving surface S(t) can be written as
(e.g. Petryk and Mréz, 1986)

*
dS = (Vs-0)dS = D,0,dS, n=—Vs0-n=—nD,0;e. (34)

By virtue of (34a), the material derivative of a generic surface integral

L(f,S;7) = /s( )f(?,‘,r)dS,
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can be shown to permit the representation

d] * *
—Szls:/{f+st~0}dS, (35)
dT s

in terms of the initial transformation velocity. Upon combining Egs. (34), one may also find that
(n;dS)* = (mD; — n;D,)0,dS = D;;0,dS, (36)

which results in the following two variants of (35) involving products of n and scalar or vector fields:

d *
E/anids—/s{fni‘f'szje/}dSa -

d
JR— / l/l,‘l’lidS = /{u;]’[l +Dlj(u,91) + Qnuiﬂ,-}dS.
dr S S

As shown in Bonnet (1995a), the operator D;; in (36) and (37) is a tangential differential operator which, by
virtue of the Stokes’ theorem, satisfies the identity

/Di/‘de = /eijkezmknzfm ds =0, (38)
N s

for any closed regular surface S where e;; denotes the permutation symbol. On the basis of (37b) and (38),
the equality

d
—/u-ndS:/(u'-n—i—Q,,V-u)dS, (39)
dr Js P
immediately follows. As a consequence, upon setting # = w - ¢ where w and ¢ denote arbitrary elastody-
namic displacement and stress fields, respectively, one has

%/w-tdS:/{w"H—w-(a’-n)—l—@,,V-(w-a)}dS,
:/{w’~t+w-a’-n+9n(a:Vw+(V-a)~w)}dS, (40)

where t = n- 6 = 6 - n stands for the surface traction.

5. Shape differentiation using an adjoint solution

As examined earlier, a convenient approach to the non-linear minimization of (4) with respect to 5

involves gradient search (e.g. modified Newton) methods which inherently require repeated evaluation of ¢
due to cavity shape perturbations. In view of the well-known computational drawbacks of the finite-dif-
ference estimators, a common practice in the sensitivity analysis of functionals such as _# is to employ an
adjoint problem approach (e.g. Choi and Kwak, 1988; Bonnet, 1995a) which, besides the matter of cle-
gance, combines the computational accuracy and efficiency unmatched by numerical differentiation tech-
niques. In the present context involving unbounded media, however, a direct application of this method
may lead to ambiguities associated with the conditions at infinity. To resolve the puzzle, a rigorous
treatment of the adjoint problem-based sensitivity formula for unbounded elastic solids with an emphasis
on the generalized radiation condition (18) is the focus of this section.
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5.1. Augmented functional

For an effective minimization of #(I';f), it is useful to employ the method of Lagrange multipliers and
treat the field equations (1) and boundary conditions (2) satisfied by the primary field # as constraints.
Accordingly, the constraints on u are introduced in the form of a weak statement over the domain €;:

,QiR(F,u,il;f):/7(V-o‘+f+pw2u)~ild9—/ t-udl =0, (41)

I'+Sg

where Qp is centered at the origin and the Lagrange multiplier # belongs to a space of test functions
={ue{H..(Q 7)}’}. On integrating (41) by parts, it can be shown that

f-ﬁd9+/(ﬁ-t—u-i)df—/ t-udrl,
I'+Sg

(42)

where I'y and Sy are the surfaces bounding Q; as elucidated before, and £ = n - C : Va. It is important to
observe that the limit of (42) as R tends to infinity represents a weak formulation of (1) and (2) with & used as
a weighting field. As a result, under the assumption that

Ar(Tu i f) = /7(V-(C : Vi) + po’in) - udQ +

&

lim [ (@-t—u-f)dl =0, (43)

R—00 I

which will be demonstrated later, one finds that

y/(F,u,il;f)Egijll%R(F,u,ﬁ;f):/ (V- (C: Vi) + po’a) - udQ + f-ildQ—/ t-udl =0.
00 - o

r+s

(44)

*
To obtain the material derivative ¢ which accounts for (1) and (2), an augmented functional . is intro-
duced on the basis of (44) where

L uaf)=Juf)+ V(') + Re[oA (I, u,uf)). (45)

In what follows, it will be assumed without loss of generality that (i) the transformation velocity (28)
vanishes near the observation points x” (m = 1,2, ..., M) which are by definition away from the cavity; (ii)
the free surface of the half-space remains flat in a geometric transformation so that

0(5) =0, & € Qups,
0,(6)=0(8)-n=0, E€S, (46)

where n is the outward normal to ©, and (iii) the prior information ¥ is specified via (9). By virtue of (4),
(6), (10), (32) and the foregoing assumptions, the material derivative of % can be expressed as

* ok ok * - U—
$:J+Y/+Re[=;z/]:Re[/ (w—uw®) - W -ddQ+(q—¢") - G-q+ <], (47)
Qobs
where #' = Ou/0t, and
=0 drg, =0
. .. -1 fr )0,dT:, s=1,2,3
4(I) = (90:915--++99)s  ¢(I) =4 — [ 3 —¢,)%0,dI:, s=4,56 (48)
- 11 —q)0,dl'e, s=7,8,9

with g, (s =0,1,...,9) given by (11) in terms of surface integrals over I.
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For the remote sensing problem of interest, it is natural to postulate that the support of f which is used
to “illuminate” the cavity lies entirely outside of Qc, i.e. that £(&) = 0 for & € I'. With such hypothesis and
the required smoothness of the test function # where

AT uuf)=0 = oA uwi;f)=0, Vaecv, (49)
it can be shown by means of (32) and (40) that (47) reduces to

* -
CS,”(F,u,il;f):Re{/ (V-&+(u—u°b5)-W+pw2it)-u’d£2—/ i-u/dl"}
Q- r+s
—|—Re[/(pa)2it-u—&:Vu)0,,dF}—l—(q—qp)-G-;, (50)
r

where ¢ = C : Va, and 5 is homogeneous in 0, as specified by (48). Provided that # is known beforehand,
formula (50) quantifies the sensitivity of % due to prescribed shape perturbation, manifest in the boundary
distribution of 0,.

5.2. Adjoint state

To satisfy the fundamental requirement that the shape sensitivity :Eif vanishes when frivial normal
transformation velocity (6, = 0) is prescribed, the Lagrange multiplier # must be chosen so that the first
term on the right-hand side of (50) equals zero. Such a requirement directly defines the (elastodynamic)
adjoint state u as a solution to the variational problem

/ (V~&+(u—u°'”)-W+pw2it)-u’dQ—/ t-udl =0, (51)
o r+s
whose strong statement can be written explicitly in terms of the field equations

V-6+ W' (u—ub) = —po’a,

&:C:E, EGQ_7 (52)

1

E=5 (Vi + V'a)
and boundary conditions

t=0, ¢(eTlus. (53)

Given the primary field # for an assumed cavity geometry, the solution to (52) and (53) can be effectively
evaluated in terms of the regularized BIE (16) with the free field u} taken as the response of a cavity-free
half-space due to internal sources f" = W' . (u— u>) which are proportional to the misfit between ex-
perimental observations and forward predictions at measurement locations.

On the basis of (1), (25) and (52), it can further be shown that both the primary field and the adjoint state
satisfy the generalized radiation condition owing to the localized (i.e. finite) support of the respective body
force distributions, £ and f. With such observation and Lemma (26), the proof of the relationship (43)
(whose validity was assumed earlier) immediately follows.

5.3. Gradient formula

*
In view of (50) and (51) and the identity .o# = 0, the material (i.e. shape) derivative of the cost function
(4) reduces to

*

/(F;f)Q%(F,u,il;f)Re{/rl(pwzﬁw&:Vu)B,,dF +(qfqp)«G-;, (54)
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where u and # are the forward and adjoint solutions, respectively. This formula is similar to that obtained
by Bonnet (1995a) for a homogeneous full-space problem without an account for the radiation condition.

Despite its elegance, however, expression (54) may not be tractable within the framework of boundary
integral techniques owing to the difficulties associated with the evaluation of total displacement gradients at
the boundary (e.g. Sladek and Sladek, 1986). To circumvent such impediment, it is instructive to invoke the
concept of surface gradients (33) and observe that

6:Vu=06:(Vsu+n® (n-Vu))=6¢:Vsu+t-u,, (55)

where u, = n- Vu. By means of (55) and the Neumann boundary condition (53), material derivative (54)
can be rewritten as

*

J(T:f) = Re[/r(pwza-u— G Vsu)H,,dF} +(q-¢)G-q. (56)

Finally, on expressing & in terms of ¢ and #, for an isotropic elastic solid (see Bonnet, 1995b) (56) can be
shown to permit the representation

J(rsf) =Re [ / {pw w2 (Vs )V w) (Va4 V) Vo

T u(Vsia-m)- <vsu~n>}endr} C4-q) G4 (57)

which involves strictly the tangential derivatives that are readily computable from the nodal values of # and
uonl.

5.4. Additional considerations

To demonstrate the generality of (45) in view of the fact that the imaginary part of .o/ is neglected in
constructing the augmented functional, it is important to observe that taking .# in the alternative form

LT, f) = (i f) + V() + I [/ (T, u i f) |, (58)

yields the expression for } which is identical to the formula derived earlier on the basis of (45). As a result
the shape derivative (57), with the featured adjoint state given by (52) and (53), intrinsically enforces both
real and imaginary components of the weak statement (44) as required by the inverse solution.

In situations when a set of K sequential seismic fields, generated by the respective time-harmonic body
force distributions f* (k = 1,2,...,K) is used to illuminate the cavity, the foregoing developments can be
generalized by writing

/Q (k= wkobs) - WE . (uF — uo%) dQ, +%(l] ~¢)- G- (q-¢) (59)

obs

S

SIS f) =

K
k=1

and

FES oo = SR [{ ot = 2 sty (vs )

— w(Vsit* + Vi) : Vo + p(Vsi - n) - (Vsu* - n)}@,, dr] +@-¢) G-q.

(60)
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for the cost function and its material derivative, respectively. In (60), [#*,# = n - 6*] denotes the adjoint
elastodynamic state associated with the kth seismic source where

- O ) = o
¢ =C: ¥, ced, o

& = %(w" + Vi)
and

#=0 ¢crus. (62)

6. Computational treatment and results

In practice, the location and shape of I' can be taken to depend on a finite set of design parameters,
p=(p1,p,...,pp). With such assumption, the sensitivity formulas 0_#/0p, required for the minimization
of # can be obtained by setting t = p, (d = 1,2,...,D) in (60). As long as the topological characteristics of
I' are independent of 7 (e.g. I'(t) remains simply connected), the evolving boundary element mesh repre-
senting I'(7) can be created by interpolating a suitable set of parameter-dependent nodes x(p) with fixed,
1.e. pre-defined mesh connectivity. For a generic point £ € I" and a given Q-node boundary element £ C I,
the foregoing interpolation can be formally written as

[Y
&p) =D N,(mx(p), ECE, nek, (63)

where N,(n) are the shape functions for the O-node element with parent domain E,. With (63), the
boundary element solution is implemented on the basis of (16) in a standard fashion. For the gradient-
based back-analysis, each partial derivative 0,#/0p, is computed by applying (60) with the transformation
velocity @ = 6/ given by

0

Ox?

OdZZINq(n)a—m(P% Ec€E, nek,. (60
=

In this investigation, surface of the cavity is discretized via eight-node quadratic boundary elements (see,
e.g. Brebbia et al., 1984).

6.1. Gradient evaluation

To illustrate the performance of the adjoint problem approach, a numerical experiment was performed
with reference to the spherical cavity pictured in Fig. 2 whose design parameters, p = (p1, p2, p3), represent
the position of its center. In this case, (64) reduces to

0 =e;, d=12,3. (65)

The true and trial cavities are centered respectively at p™ = (0,0,2a) and p° = (2a, 3a, 6a), where a de-
notes the radius of the sphere. The testing configuration shown in the figure has nine points; in succession,
each grid node is taken as a location of the vertical point source, with the remaining eight points used as
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Sensor layout: 19;% ’ .ﬁl
® gz ®

Fig. 2. Spherical cavity and testing grid in a half-space with 1/u = 3/2.

receivers, so that a total of K x M x 3 =9 x 8 x 3 = 216 synthetic observation data are generated for the
true cavity. The constitutive parameters of the half-space and the testing frequency are chosen such that
A3 _ wa
—==, ®O=
po2 u/p
To expose the performance of the adjoint problem approach, objective function for the trial cavity is
computed via (4)—(6) with W' = 10°pad;; and no prior information, i.e. ¥ = 0.

In Table 1, rows 3 through 5 show a comparison between the adjoint approach and central difference
estimates in terms of the sensitivities 0,#/0p, (d = 1,2, 3) for an assumed location of the trial cavity. The
step size for the finite-difference calculation is taken as Ap; = 0.002a. As can be seen from the Table, there is
a reasonable agreement between the two methods. It should be noted, however, that the computational
time for the adjoint approach is approximately 1/6 of that for the central difference method in the problem
examined. For a general setting involving D design parameters, the foregoing efficiency ratio can be esti-
mated as 1/(2D) since the central difference method requires 2D computations of the BIE (16), each cor-
responding to a different (perturbed) configuration of I'.

In the foregoing example, the initial transformation velocity is restricted to a constant value, i.e. 0 = e,
(d = 1,2,3) as driven by the assumed parameterization. To investigate the pirformance of (60) under more

—1 (66)

general conditions, the finite-difference and adjoint approach estimates of ¢ are further compared in the
last row of Table 1 for the case

)
. . . T _
0(¢) = smé smé log, éel +él—§2 s1née2 —&—gl—fze Slagy, (67)
a a a a a a-
Table 1
Gradient comparison: finite-difference vs. adjoint approach
Mesh 96 elements, ¢ = 61.62ua’ 294 elements, ¢ = 61.99ua’
Method Central difference Adjoint Central difference Adjoint
1/(ua®)d,¢ /opy 0.8858 0.8761 0.8764 0.8779
1/(ua?)0.¢ /3p, 1.4184 1.4322 1.4431 1.4350
1/(ua®)d.# /ops —1.6642 —-1.6549 -1.6715 -1.6703
*
1/(ua®) ¢ 2.2762 2.2363 2.2720 2.2543
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with the finite-difference approximation calculated as

*  JI b )= JT—10:f )
S~ 21 ’

7 = 0.002a. (68)

From the Table, an overall agreement between the two methods should again be apparent.
6.2. Cavity imaging

The next example deals with the inverse scattering problem for an ellipsoidal void illustrated in Fig. 3,
whose semi-axes are aligned with the global coordinate system. For imaging purposes, the cavity is pa-
rameterized in terms of its centroid coordinates ¢; and semi-axes lengths 7, (i = 1,2, 3) so that

p = (c1,¢2,03,71,72,713). (69)

The true void geometry, with volume V'™ = 4.0724°, is given by p'™® = (—4a, —2a,4a, 1.8a,0.9a,0.6a); its
trial counterpart is taken as p° = (—2a,0, 5a,a, a,a). The cavity is illuminated in succession via nine point
sources according to the testing grid depicted in Fig. 2. For each incident seismic field, Cartesian com-
ponents of the surface motion are monitored at 64 control points uniformly spaced over the square ob-
servation area (14a x 14a) bounded by the source grid. Similar to the previous example, the constitutive
parameters and testing frequency are chosen after (66). From the problem configuration, one may observe
that the shear wave length of the illuminating seismic field is approximately twice the largest diameter of the
true cavity.

With reference to (4)-(6) and (9), the cost function ¢ is computed with W} = 10°pad;; and the prior
information on the cavity geometry given by

qp = (Vtrue7 9,0,0,0,0,0, Oa Oa 0)7

G =2 x 10%u diag [6173, 0,0,0,0,0,0,a ",a77, a’7], (70)
which indicate an opening of volume ¥ = V'"" whose principal axes of inertia are aligned with the global
coordinate system. In (70), indicated by the bullet symbol are the entries of ¢ (with zero weighting coef-
ficient) on which no prior information is available, namely the cavity’s centroid coordinates and its prin-
cipal moments of inertia. One may also observe that the last three entries of ¢”, while formally constituting
the prior information, have been already assimilated into the problem via parameterization (69). As a
result, the only limitation directly enforced through (70) is that on the cavity volume, with the weighting

Fig. 3. Surface of an ellipsoidal cavity discretized via 96 eight-node boundary elements.
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Fig. 4. Evolution of design parameters in the minimization process.

Trial ¢avity

Fig. 5. Projection of true and trial cavities on the horizontal plane.

coeflicient (2 x 10~°u) chosen so that the prior knowledge component in (4) is an order of magnitude larger
than its misfit counterpart, J, at p = p°.

To simulate the presence of modeling and measurement uncertainties, synthetic observations of the
ground motion (#°®) are contaminated with the aid of a perturbation factor (1 + ) applied to their
scattered component, where ¢ is a random variable uniformly distributed over the interval [—0.01,0.01].
The minimization procedure, employed in this study, revolves around an unconstrained quasi-Newton
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descent method with a quadratic line search algorithm, where the Hessian operator is updated via the
BFGS formula (see, e.g. Nocedal and Wright, 1999). With reference to the results obtained in Section 6.1,
the computational effort is reduced by a factor of 12 by estimating the sensitivity functions 0_¢/0p,
(d=1,2,...,6) via an adjoint problem approach.

Fig. 4 illustrates the iterative process of mapping the featured cavity, p*°, starting from p = p°. As can
be seen from the figure, the optimization procedure converges to the global minimum after approximately
thirty major iterations. For clarity, Fig. 5 depicts the imaging procedure geometrically in plane view.

It should be noted that the success of the foregoing method is strongly dependent on the choice of a
starting point, a pitfall that is common to all gradient-based algorithms. Such a deficiency could be alle-
viated by restarting the search procedure from a variety of initial points or, alternatively, by selecting p°
using the concept of topological derivative 7 (x) (Sokolowski and Zochowski, 1999; Garreau et al., 2001),
which furnishes an information about the variation of the cost function ¢, when a spherical cavity of
infinitesimal radius is introduced at x € Q. A more robust, yet reasonably efficient minimization algorithm
could be devised by employing a random global search (e.g. a genetic algorithm, Gen and Cheng, 2000),
followed by the descent procedure described herein.

7. Conclusions

In this communication, the problem of mapping three-dimensional cavities in a semi-infinite solid from
surface seismic measurements is investigated via a regularized BIE method. With the solid modeled as a
uniform elastic half-space, the inverse problem is reduced to the gradient-based minimization of a misfit
between the observed surface motion and its elastodynamic prediction for an assumed void location. In the
formulation, necessary sensitivities of the predictive BIE model are evaluated via an adjoint problem ap-
proach and an Eulerian-type continuum kinematics description. A rigorous treatment of the radiation
condition for an elastic half-space, which is essential to both forward and inverse scattering problems
involving semi-infinite solids, is elucidated. The proposed format of the cost function, which includes
weighted measures of (i) observation-theory misfit and (ii) prior information, further lends itself to sto-
chastic generalizations such as the maximum likelihood inverse theory (Tarantola, 1987). Numerical results
show that the adjoint problem approach produces sensitivity estimates that are consistent with their finite-
difference counterparts, while reducing the computational time by a factor of 2D, where D is the number of
design parameters used to describe the cavity geometry. Beyond serving as an effective tool for the three-
dimensional imaging of voids concealed by a uniform semi-infinite solid, the analysis furnishes the basis for
extensions of the methodology to problems involving solid inclusions in layered media, with potential use in
meso- and micro-scale material characterization, defense applications, and the diagnosis of medical ail-
ments. It is also shown that the elastic waves are capable of resolving inhomogeneities smaller than the
predominant wave length of an illuminating wave field, a situation that is considered to be beyond the
resolution limits of stress-wave (e.g. ultrasonic) material testing.
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Appendix. Symmetry of the fundamental solution

By means of the method of displacement potentials and the Hankel integral transform (see Pak, 1987), it
can be shown that the time-harmonic displacement fundamental solution #* for a homogeneous elastic half-
space 2 permits the integral representation

R 1 o . .
i (x5, ) —{akl / (s + 7)) dE + (341 0820 + 312 5in 26)
0

4ru
< [T = manta e 280050 [ nancoan),
0 0
1 o .
f/;(x,y, (U) = m {5/& /) ())2 + “/l)fjo(}"f) dé + (5k1 sin 20 — 5k2 COS 29) (Al)

<[ " (92— 71)ER(E) dE — 2043 5in 0 / () dé)},

. 1 o0 3 ) 00

u';(x,y,w) :m{éﬁ/ QQQJQ(Vf)dé-F(ék] COSQ+5k281n0)/ Q]éJl(Vé)dé},
0 0

where  is the circular frequency of vibration, £ = 1,2, 3 denotes the force direction, and x and y are the

receiver and source locations, respectively. In (A.1), é denotes the Kronecker delta; J, is the Bessel function

of order n, and

X —
r= \/(xl =)+ (=)’ cosl = 17)/1’ (A.2)

with the kernel functions are given by

. - 62 —ald| B —Bldi| 1 R7(9) 52 —ad; )
Vl(£7x>y>w) _ZOCkfe 2ks26 2](3 Rf(é) OCe +BC
2 2 2
+ w (e*(ﬂmHn) + e*(ﬂyﬁwfs)),

kR(E)

1
(& x,p,0) = ﬁ (e*ﬁ\dl\ + e—/fd2)7

4 +
(.3, 0) = san(dr) oy (e — e} 5 RS (g

2k2 R(3)
2(E+B) (o perim (B h
- kiZR—(é/)f ) (e Bsm) | o), (A3)
@i(&x,p,0) = —sgn(dy) fiz (el —eflal) 4 2%2 252 (e +e %)
2552"’_2 —(fx3+ay: —(py3+ox.
_ ]{(3R<€ﬂ) ) (é e (B 3+V3)+OCﬁe (Bys+ 3))7
2 1 R* :
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where dy, = x3 F y3 and

" / / [P p
R = (52 + ﬁZ)z + 452()(/31 o= 52 — k!27’ ﬂ = 52 — k?’ kp = m, ks = Q)\/i (A4)

One may observe that the kernels (A.3) are characterized by intrinsic symmetries

yl(é;x7y7w):yl(é;y7x7w)7 yZ(é;xayaw):'VZ(é;y7xaw)a (A 5)
73(@3573’7@):91(5;)’,3‘;@), QZ(é;x,y,w):QZ(é;yawi)v '

with respect to the source-receiver arrangement. With the aid of (A.2) and (A.5), it can be directly verified
that the displacement Green’s functions (A.1) exhibit spatial reciprocity wherein

it (x,y,0) =@ (y,x,0), xyeQ jke{l,23} (A.6)
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