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Abstract

The problem of mapping underground cavities from surface seismic measurements is investigated within the

framework of a regularized boundary integral equation (BIE) method. With the ground modeled as a uniform elastic

half-space, the inverse analysis of elastic waves scattered by a three-dimensional void is formulated as a task of mini-

mizing the misfit between experimental observations and theoretical predictions for an assumed void geometry. For an

accurate treatment of the gradient search technique employed to solve the inverse problem, sensitivities of the predictive

BIE model with respect to cavity parameters are evaluated semi-analytically using an adjoint problem approach and a

continuum kinematics description. Several key features of the formulation, including the rigorous treatment of the

radiation condition for semi-infinite solids, modeling of an illuminating seismic wave field, and treatment of the prior

information, are highlighted. A set of numerical examples with spherical and ellipsoidal cavity geometries is included to

illustrate the performance of the method. It is shown that the featured adjoint problem approach reduces the com-

putational requirements by an order of magnitude relative to conventional finite-difference estimates, thus rendering the

three-dimensional elastic-wave imaging of solids tractable for engineering applications.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Remote sensing of cavities embedded in a semi-infinite solid via elastic waves is a topic of considerable

interest in mechanics and engineering owing to its relevance to a number of applications ranging from non-

destructive material testing to medical diagnosis, oil prospecting and underground object detection. In the

context of seismic exploration, a comprehensive three-dimensional mapping of subterranean structures is

typically associated with the interpretation of a large number (often thousands) of motion measurements

via finite-difference elastodynamic models which are inherently based on domain discretization (e.g. Plessix

et al., 1999). In contrast, this investigation is concerned with problems where detailed mapping of un-
derground openings (such as defense facilities) is required and only a few measurements can be made,
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usually on the ground surface. In such instances, the boundary integral equation (BIE) formulations, which

provide a direct mathematical link between the observed waveforms and the geometry of a hidden object,

can be used to effectively compensate for the limited field data (see Colton and Kress, 1983, for acoustic

problems).
The problem of inverse scattering (Bui, 1994), of interest in this study, has been the subject of extensive

mathematical research; among numerous reviews on the topic, on may mention Colton and Kress (1992),

Colton et al. (2000) and Pike and Sabatier (2002) as examples spanning the past decade. In the context of

impenetrable scatterers (such as voids examined herein), various numerical solution procedures, often

based on the BIE method, have been proposed for the problem. Most existing treatments of this type,

however, are limited to the inversion of electromagnetic or acoustic far-field waveforms in infinite media

(e.g. Bonnet, 1995a). Few exceptions dealing with the inverse scattering of elastic waves include crack

identification in infinite elastic solids by Kress (1996) (two-dimensional treatment in the frequency domain)
and Nishimura (1997) (three-dimensional analysis in the time domain). Aimed at bridging such gap

between the elastic wave scattering theory and its applications, the focus of this investigation is the

development of an analytical and computational framework for the identification of cavities via an

elastodynamic BIE method, for the more complex and realistic case involving three-dimensional elastic

wave propagation in a semi-infinite solid. By means of a well-defined incident seismic field and a set of

surface motion sensors used to monitor elastic waves scattered by the cavity, the inverse problem is reduced

to the minimization of a cost function representing the misfit between the field observations and their

predictions for an assumed void location. For a precise treatment of the featured body and surface wave
fields, the predictive model used in this study (Pak and Guzina, 1999) is based on the fundamental solution

for a uniform elastic half-space. In the pursuit of the gradient search technique employed by the inverse

solution, necessary derivatives of the cost function are evaluated via an adjoint problem approach which,

besides the matter of elegance, offers a superior computational performance relative to finite-difference

sensitivity estimates. This is accomplished by revisiting the semi-analytical treatment proposed for infinite

media in Bonnet (1995a). To complete a rigorous theoretical foundation for the imaging problem, included

is an explicit treatment of the radiation condition for semi-infinite solids; a topic that has, despite its

central role in the application of BIE methods to forward and inverse scattering problems involving
unbounded media, eluded previous studies. A numerical example where an ellipsoidal cavity is identified

from synthetically generated, noise-polluted field measurements is included to illustrate the proposed

method.

2. Problem statement

To establish a fundamental framework for the BIE-based identification of underground cavities by

elastic waves, the focus of this study is the inverse scattering problem for an isotropic, homogeneous elastic

half-space housing an internal void. With reference to a Cartesian frame fO; n1; n2; n3g, the half-space
X ¼ fðn1; n2; n3Þjn3 > 0g is characterized by the Lam�ee�s constants k and l, mass density q, and is bounded
on top by the free surface S ¼ fðn1; n2; n3Þjn3 ¼ 0g. The cavity inside the half-space occupies a simply
connected finite region XC � X bounded by a smooth closed surface C. For further reference, let X� denote

the semi-infinite region surrounding the cavity, i.e. the complement to XC in the half-space so that

X� ¼ X n ðXC [ CÞ, and let n denote the normal to C directed towards the exterior of X�. With reference to

Fig. 1, the cavity is ‘‘illuminated’’ by a time-harmonic seismic source f , with the resulting surface motion
monitored over a finite set of slightly embedded control points n ¼ xm (m ¼ 1; 2; . . . ;M). To discuss condi-
tions at infinity, an auxiliary surface CR ¼ RR \ X is introduced, where RR is the sphere of radius R centered
at the origin. The respective subsets of X, X� and S which are bounded by CR will be denoted as XR, X

�
R and

SR, with an implicit assumption that R is sufficiently large so that XC � XR.
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2.1. Forward problem

For a systematic treatment of the inverse scattering problem, it is necessary first to introduce the as-

sociated forward problem wherein the response of a semi-infinite solid X� due to prescribed seismic loading

is to be determined for a known cavity location and geometry. With the time factor eixt omitted henceforth

for brevity, the forward solution, herein denoted as the total field uðn;xÞ, can be formally defined via an
elastodynamic state ½u; t
 which satisfies the field equations

r � r þ f ¼ �qx2u;

r ¼ C : e; n 2 X�;

e ¼ 1
2
ðruþrTuÞ;

ð1Þ

subject to the boundary conditions

t � n � r ¼ 0; n 2 C [ S: ð2Þ

In (1) and (2), f is the time-harmonic body force distribution representing the seismic source: r � r
*

(eg.

Malvern, 1969); t stands for the surface traction, and C denotes the isotropic elasticity tensor, i.e.

C ¼ kI2 � I2 þ 2lI4; ð3Þ

where In (n ¼ 2; 4) is the symmetric nth order identity tensor.

2.2. Inverse problem

With reference to the testing configuration outlined in Fig. 1, the inverse problem of cavity identification

can be set forth as a task of resolving the void shape and location by interpreting the observed response of
the excavated half-space X� due to prescribed (i.e. known) seismic excitation. For this class of remote

sensing problems, the inverse solution can be formulated by seeking the minimizer C of the cost function

JðC; f Þ ¼ Jðu; f Þ þ WðCÞ; ð4Þ

where J represents the misfit between experimental observations (uobs) and theoretical, i.e. forward pre-
dictions (u) for an assumed void geometry C, and W is a non-negative set function used to include an a
priori information on the shape and location of the cavity. Upon introducing Xobs � X� as a finite control

volume enclosing the entirety of measurement stations, Jðu; f Þ can be written in general terms as

xm

ΓR

3ξ

O
S

n’

λ, µ, ρ

1ξf

Γ

n

Fig. 1. Illumination of an underground cavity by elastic waves.
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Jðu; f Þ ¼
Z

Xobs

uðuðn;xÞ � uobsðn;xÞÞdXn; ð5Þ

where u is a weighted measure of distance between u and uobs.
In this investigation, (5) is specialized to the least-squares format with a discrete set of M observation

points by taking

uðu� uobsÞ ¼ 1

2
ðu� uobsÞ �W � ðu� uobsÞ;

W ¼ WðnÞ ¼
XM
m¼1

W m
ij dðn � xmÞei � ej; i; j ¼ 1; 2; 3

ð6Þ

where d stands for the three-dimensional Dirac delta function; ej is the unit vector in the xj-direction; over-
bar symbol denotes the complex conjugation, and W m

ij are suitable constants chosen so that they form a

Hermitian and positive definite matrix for m ¼ 1; 2; . . . ;M . In (6) and thereafter, the Einstein summation
convention is assumed over the spatial coordinate indices. For consistency of the ensuing formulation, W m

ij

are assumed to have a physical dimension of force per length.

Assuming that the prior information about the cavity under consideration can be synthesized in terms of
a closed surface Cp bounding a fixed finite region Xp

C � X, the penalty function W in (4) can be compactly

formulated in terms of the Hausdorff distance H (Edgar, 1990) between sets C and Cp as

WðCÞ ¼ #H 2ðC;CpÞ; HðC;CpÞ ¼ maxfhðC;CpÞ; hðCp;CÞg; ð7Þ

where # is a scalar weighting parameter reflecting the quality of prior knowledge, and

hðC;CpÞ ¼ max
n2C

min
f2Cp

fðn � fÞ � ðn � fÞg1=2: ð8Þ

In (8), function hðC;CpÞ is called the directedHausdorff distance from C to Cp; it locates the point n 2 C that
is farthest from its nearest neighbor f in Cp, and measures jjn � fjj for these two points.
In situations where the prior information on the cavity geometry (e.g. size, depth) is associated with

varying degrees of confidence, however, a more refined measure of the misfit between C and Cp may be

required. To address the problem, it is useful to invoke the Lebesgue measure in R3 i:e:
R
dXn

� �
together

with the collection of additive set functions
R

ni dXn and
R

ninj dXn (i; j ¼ 1; 2; 3). With such quantities, a
resolute alternative to (7) can be introduced via the quadratic form

WðCÞ ¼ 1

2
ðq� qpÞ � G � ðq� qpÞ; ð9Þ

where G is a real symmetric positive definite matrix of weighting coefficients, q ¼ qðCÞ, qp ¼ qðCpÞ, and

qðCÞ ¼ ðq0; q1; . . . ; q9Þ; qsðCÞ ¼

R
XC
dXn; s ¼ 0

1
q0

R
XC

ns dXn; s ¼ 1; 2; 3R
XC

P3
j¼1

j 6¼s�3
ðnj � qjÞ2 dXn; s ¼ 4; 5; 6

R
XC

Q3
j¼1

j 6¼s�6
ðnj � qjÞdXn; s ¼ 7; 8; 9

8>>>>>><
>>>>>>:

ð10Þ

synthesizes the information about the volume (s ¼ 0), centroid (16 s6 3), and inertia tensor (46 s6 9) of
the cavity. For the ensuing developments, the entries of q can be further reduced to surface integrals
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qsðCÞ ¼

�
R

C n1n1 dCn; s ¼ 0

� 1
2q0

R
C n2s ns dCn; s ¼ 1; 2; 3

�
R

C ns�3ns�3
P3

j¼1
j 6¼s�3

ðnj � qjÞ2 dCn; s ¼ 4; 5; 6

�
R

C ns�6ns�6
Q3

j¼1
j 6¼s�6

ðnj � qjÞdCn; s ¼ 7; 8; 9

8>>>>>><
>>>>>>:

ð11Þ

by virtue of the divergence theorem.

In view of the significant computational effort required to evaluate u for elastodynamic problems, the
cost function (4) can be minimized most effectively within the framework of gradient-based descent tech-
niques such as the quasi-Newton or conjugate gradient methods (e.g. Luenberger, 1973). In the sequel, a

systematic derivation of the necessary sensitivities of J within the framework of BIE techniques will be

described in detail.

3. Boundary integral formulation for the primary field

For the computational treatment of (1) and (2), the total displacement field u can be conveniently de-
composed as

u ¼ uF þ uS; n 2 X�; ð12Þ

where uS denotes the scattered field (uS ¼ 0 in the absence of a cavity), and uF is the free field defined as the
response of a cavity-free half-space X due to given body force distribution f . By virtue of (1), (2) and (12), it
can be shown that the scattered field itself represents an elastodynamic state, i.e. that ½uS; tS
 satisfies the
field equations

r � rS ¼ �qx2uS;

rS ¼ C : eS; n 2 X�;

eS ¼ 1

2
ðruS þrTuSÞ

ð13Þ

and boundary conditions

tS ¼ �tF; n 2 C;

tS ¼ 0; n 2 S;
ð14Þ

with the free field ½uF; tF
 assumed to be known beforehand.
To obtain an integral representation of u in terms of the boundary data, it is useful to introduce the

fundamental solution ½ûu; t̂t
 for a semi-infinite solid X, where ûuki ðn; x;xÞ and t̂tki ðn;x;x; nÞ are the respective
ith components of the displacement and traction vectors at n 2 X due to a unit time-harmonic point force

acting at x 2 X in the kth direction (see also Appendix). For the ensuing treatment, these Green�s functions
can be decomposed into a singular part ½½ûu
1; ½̂tt
1
 and a residual, i.e. regular component ½½ûu
2; ½̂tt
2
 via

ûuki ðn; x;xÞ ¼ ½ûuki ðn; x;xÞ
1 þ ½ûuki ðn; x;xÞ
2 � ûuki ðn; x; 0Þ þ ½ûuki ðn; x;xÞ
2;
t̂tki ðn; x;x; nÞ ¼ ½̂ttki ðn; x;x; nÞ
1 þ ½̂ttki ðn; x;x; nÞ
2 � t̂tki ðn; x; 0; nÞ þ ½̂ttki ðn; x;x; nÞ
2;

ð15Þ

where ûuðn; x; 0Þ and t̂tðn; x; 0; nÞ represent the static point-load solution for a void-free elastic half-space X
(Guzina and Pak, 2001).
With the foregoing definitions, it can be shown (see Pak and Guzina, 1999) that the scattering problem

(1) and (2) can be reformulated in terms of the regularized (i.e. Cauchy principal value-free) BIE
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Z
C
fuiðy;xÞ � uiðn;xÞg½̂ttki ðn; y;x; nÞ
1 dCn �

Z
C
uiðn;xÞ½̂ttki ðn; y;x; nÞ
2 dCn þ uFk ðy;xÞ ¼ ukðy;xÞ;

y 2 C; ð16Þ

with the effects of seismic excitation, f , synthesized via the free-field term

uFk ðy;xÞ ¼
Z

X�
fiðnÞûuki ðn; y;xÞdCn; ð17Þ

given in terms of the half-space fundamental solution. It is important to observe that (16) rests on the a

priori assumption that the scattered field satisfies the generalized radiation condition

lim
R!1

Z
CR

fuSi ðn;xÞt̂tki ðn; x;x; n0Þ � tSi ðn;x; n0Þûuki ðn; x;xÞgdCn ¼ 0; x 2 X�
R ; ð18Þ

where n0 is the unit normal to CR directed towards the exterior of X�
R as indicated in Fig. 1. Although the

far-field requirements of type (18) are implicit to most boundary integral analyses of elastodynamic

problems involving semi-infinite domains, they have so far eluded an in-depth scrutiny. For a rigorous
pursuit of the forward scattering problem and the associated imaging task, an explicit proof of (18) is the

focus of the following section.

3.1. Generalized radiation condition

In dealing with the radiation condition for unbounded elastic media, a useful point of departure is the

Graffi�s reciprocal theorem in elastodynamics (Wheeler and Sternberg, 1968). With reference to an arbitrary

finite domain D bounded by surface oD with outward normal n0, Graffi�s theorem can be formally stated asZ
oD
fuiðn;xÞ~ttiðn;x; n0Þ � tiðn;x; n0Þ~uuiðn;xÞgdS ¼

Z
D
f ~ffiðn;xÞuiðn;xÞ � ~uuiðn;xÞfiðn;xÞgdV ; ð19Þ

where ½u; t
 and ½~uu;~tt
 are two arbitrary elastodynamic states on D associated with time-harmonic body force

fields f and ~ff , respectively. Upon specifying D ¼ XR, f ¼ dðn � xÞej, and ~ff ¼ dðn � yÞek where x; y 2 XR

and ej is the unit vector in the xj-direction, (19) can be reduced toZ
CR

fûujiðn; x;xÞt̂tki ðn; y;x; n0Þ � t̂tji ðn; x;x; n0Þûuki ðn; y;xÞgdCn ¼ ûujkðy; x;xÞ � ûukj ðx; y;xÞ;

x; y 2 XR; j; k 2 f1; 2; 3g ð20Þ

in terms of the fundamental solution ½ûu; t̂t
 for a void-free elastic half-space X. Owing to the intrinsic

symmetry of the displacement Green�s function: ûujkðy; x;xÞ ¼ ûukj ðx; y;xÞ as shown in Appendix, the right-
hand side of (20) vanishes so that

Zjkðx; y;RÞ �
Z

CR

fûujiðn; x;xÞt̂tki ðn; y;x; n0Þ � t̂tji ðn; x;xÞûuki ðn; y;x; n0ÞgdCn ¼ 0; x; y 2 XR; ð21Þ

for any fixed pair x; y 2 X and R sufficiently large so that both x and y are contained within XR. It is

important to observe that taking the limit of Zjkðx; y;RÞ as R ! 1 constitutes an explicit proof that the

fundamental solution itself satisfies the generalized radiation condition.

To demonstrate the validity of (18) on the basis of (21), it is instructive to represent the scattered field uS

induced by the Neumann boundary conditions (14a) via a single-layer potential (e.g. Kupradze, 1965)

uSi ðx;xÞ ¼
Z

C
gjðf;xÞûuijðf; x;xÞdCf; x 2 X�; ð22Þ
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where g denotes an appropriate surface density over C. On employing (22) and interchanging the order of
integration, one finds that

Z
CR

fuSi ðn;xÞt̂tki ðn; x;x; n0Þ � tSi ðn;x; n0;CÞûuki ðn; x;xÞgdCn ¼
Z

C
gjðf;xÞZjkðf;x;RÞdCf ¼ 0; x 2 X�

R ;

ð23Þ

with the latter integral vanishing by virtue of (21) and the postulate that R is sufficiently large so that XR

contains the cavity, i.e. that

x 2 X�
R

f 2 C

�
) x; f 2 XR: ð24Þ

On taking the limit of (23) as R ! 1, the proof of (18) immediately follows.

In a similar fashion, it can be shown that any elastodynamic field ½~uu;~tt
 in X� which admits the integral

representation

~uuiðx;xÞ ¼
Z

C

~ggjðf;xÞûuijðf; x;xÞdCf þ
Z

Xb

~ffjðf;xÞûuijðf; x;xÞdXf; x 2 X�; ð25Þ

in terms of a single-layer potential with density ~gg and a volumetric potential with density ~ff also satisfies the
generalized radiation condition, provided that the body force distribution ~ff is confined to a finite region
Xb � X�. Finally, it should be noted that the following identity

lim
R!1

Z
CR

ftiðn;x; n0Þ~uuiðn;xÞ � uiðn;xÞ~ttiðn;x; n0ÞgdCn ¼ 0; ð26Þ

is valid for any two elastodynamic states ½u; t
 and ½~uu;~tt
 on X� which independently satisfy the generalized

radiation condition (18).

4. Differentiation with respect to shape perturbations

To investigate the effect of cavity perturbations on the cost function J, the shape X� is assumed to

depend on a pseudo-time parameter s through an Eulerian-type continuum kinematics description. The

reference, i.e. unperturbed configuration X� is conventionally associated with s ¼ 0, so that the featured

domain evolution can be stated as

n 2 X� ) ns ¼ Uðn; sÞ 2 X�ðsÞ; sP 0; Uðn; 0Þ ¼ n; ð27Þ

where ns describes the ‘‘current’’ place of the material element dM that occupied position n in the reference

configuration. It should be noted that the choice of the geometric transformation U (with a strictly positive

Jacobian) for a specific problem is non-unique, i.e. that a given domain evolution considered as a whole

admits infinitely many different representations of type (27). In the ensuing exposition, all pseudo-time
derivatives dð�Þ=ds will be implicitly taken at s ¼ 0, i.e. the first-order effect of infinitesimal perturbations of

X� � X�ð0Þ will be considered.

4.1. Scalar and vector fields

Differentiation of field variables and integrals with respect to domain perturbation is a well-documented

subject (see, e.g. Petryk and Mr�ooz, 1986 and Sokolowski and Zolesio, 1992). In what follows, several basic
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concepts and results which are relevant to the study are summarized. To this end, it is instructive to in-

troduce the initial transformation velocity

hðnÞ ¼ oU
os






s¼0

: ð28Þ

Considering the inherently Eulerian description f ðn; sÞ of a field quantity f in a geometrical transforma-
tion, it is natural to define df =ds as its material (i.e. substantial) derivative at s ¼ 0 so that

df
ds

� f
H

¼ lim
s!0

1

s
ff ðns; sÞ � f ðn; 0Þg ¼ f 0 þ h � rf ; ð29Þ

where f 0 ¼ of =os stands for the local rate of change, i.e. partial ‘‘time’’ derivative with n kept fixed, and r
implies differentiation with respect to Eulerian coordinates n. Similarly, the material derivative of the

gradient of f is given by

ðrf ÞH ¼ rf
H

�rh � rf : ð30Þ

4.2. Volume and surface integrals

With reference to the continuity equation (e.g. Malvern, 1969)

dV
H

¼ ðr � hÞdV ; ð31Þ
describing the volume evolution of a given material element dM under geometric transformation (27), the

material derivative of a generic volume integral

IV ðf ;D; sÞ ¼
Z
DðsÞ

f ðn; sÞdV ;

can be expressed via either of the following two statements

dIV
ds

� I
H

V ¼
Z
D
ff
H

þ fr � hgdV ¼
Z
D
f 0 dV þ

Z
oD

f hn dS; ð32Þ

of the classical Reynolds formula where hn ¼ h � n.
To formulate the counterpart of (32) for surface integrals, one must allow for kernels which may be

undefined outside of a given material surface SðsÞ. To this end, it is useful to introduce the concepts of
surface gradient (rS) and surface divergence (rS�) via

rSf ¼ rf � ðn � rf Þn ¼ ðf;i � nif;nÞei � ðDif Þei;
rS � u ¼ r � u� n � ru � n ¼ Diui;

ð33Þ

which characterize the tangential variation of the respective fields along S. With such definitions, material
derivatives of the unit normal n and the differential element dS on a moving surface SðsÞ can be written as
(e.g. Petryk and Mr�ooz, 1986)

dS
H

¼ ðrS � hÞdS ¼ DihidS; n
H ¼ �rSh � n ¼ �njDihjei: ð34Þ

By virtue of (34a), the material derivative of a generic surface integral

ISðf ; S; sÞ ¼
Z
SðsÞ

f ðn; sÞdS;
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can be shown to permit the representation

dIS
ds

� I
H

S ¼
Z
S
ff
H

þ frS � hgdS; ð35Þ

in terms of the initial transformation velocity. Upon combining Eqs. (34), one may also find that

ðnidSÞH ¼ ðniDj � njDiÞhjdS � DijhjdS; ð36Þ

which results in the following two variants of (35) involving products of n and scalar or vector fields:

d

ds

Z
S
fni dS ¼

Z
S
ff
H

ni þ fDijhjgdS;

d

ds

Z
S
uini dS ¼

Z
S
fu0ini þ DijðuihjÞ þ hnui;igdS:

ð37Þ

As shown in Bonnet (1995a), the operator Dij in (36) and (37) is a tangential differential operator which, by

virtue of the Stokes� theorem, satisfies the identityZ
S
Dijf dS ¼

Z
S
eijkelmknlf;m dS ¼ 0; ð38Þ

for any closed regular surface S where eijk denotes the permutation symbol. On the basis of (37b) and (38),
the equality

d

ds

Z
S
u � ndS ¼

Z
S
ðu0 � nþ hnr � uÞdS; ð39Þ

immediately follows. As a consequence, upon setting u ¼ w � r where w and r denote arbitrary elastody-

namic displacement and stress fields, respectively, one has

d

ds

Z
S
w � tdS ¼

Z
S
fw0 � t þ w � ðr0 � nÞ þ hnr � ðw � rÞgdS;

¼
Z
S
fw0 � t þ w � r0 � nþ hnðr : rwþ ðr � rÞ � wÞgdS; ð40Þ

where t ¼ n � r ¼ r � n stands for the surface traction.

5. Shape differentiation using an adjoint solution

As examined earlier, a convenient approach to the non-linear minimization of (4) with respect to C

involves gradient search (e.g. modified Newton) methods which inherently require repeated evaluation ofJ
H

due to cavity shape perturbations. In view of the well-known computational drawbacks of the finite-dif-

ference estimators, a common practice in the sensitivity analysis of functionals such as J is to employ an

adjoint problem approach (e.g. Choi and Kwak, 1988; Bonnet, 1995a) which, besides the matter of ele-

gance, combines the computational accuracy and efficiency unmatched by numerical differentiation tech-

niques. In the present context involving unbounded media, however, a direct application of this method

may lead to ambiguities associated with the conditions at infinity. To resolve the puzzle, a rigorous

treatment of the adjoint problem-based sensitivity formula for unbounded elastic solids with an emphasis
on the generalized radiation condition (18) is the focus of this section.
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5.1. Augmented functional

For an effective minimization of JðC; f Þ, it is useful to employ the method of Lagrange multipliers and
treat the field equations (1) and boundary conditions (2) satisfied by the primary field u as constraints.
Accordingly, the constraints on u are introduced in the form of a weak statement over the domain X�

R :

ARðC; u; ~uu; f Þ ¼
Z

X�
R

ðr � r þ f þ qx2uÞ � ~uudX �
Z

CþSR

t � ~uudC ¼ 0; ð41Þ

where X�
R is centered at the origin and the Lagrange multiplier ~uu belongs to a space of test functions

V ¼ f~uu 2 fH 1
locðX�Þg3g. On integrating (41) by parts, it can be shown that

ARðC; u; ~uu; f Þ ¼
Z

X�
R

ðr � ðC : r~uuÞ þ qx2~uuÞ � udX þ
Z

X�
R

f � ~uudX þ
Z

CR

ð~uu � t � u � ~ttÞdC �
Z

CþSR

~tt � udC;

ð42Þ
where CR and SR are the surfaces bounding X�

R as elucidated before, and ~tt ¼ n � C : r~uu. It is important to
observe that the limit of (42) as R tends to infinity represents a weak formulation of (1) and (2) with ~uu used as
a weighting field. As a result, under the assumption that

lim
R!1

Z
CR

ð~uu � t � u � ~ttÞdC ¼ 0; ð43Þ

which will be demonstrated later, one finds that

AðC; u; ~uu; f Þ � lim
R!1

ARðC; u; ~uu; f Þ ¼
Z

X�
ðr � ðC : r~uuÞ þ qx2~uuÞ � udX þ

Z
X�

f � ~uudX �
Z

CþS

~tt � udC ¼ 0:

ð44Þ
To obtain the material derivative J

H

which accounts for (1) and (2), an augmented functional L is intro-

duced on the basis of (44) where

LðC; u; ~uu; f Þ ¼ Jðu; f Þ þ WðCÞ þRe½AðC; u; ~uu; f Þ
: ð45Þ
In what follows, it will be assumed without loss of generality that (i) the transformation velocity (28)
vanishes near the observation points xm (m ¼ 1; 2; . . . ;M) which are by definition away from the cavity; (ii)

the free surface of the half-space remains flat in a geometric transformation so that

hðnÞ ¼ 0; n 2 Xobs;
hnðnÞ � hðnÞ � n ¼ 0; n 2 S;

ð46Þ

where n is the outward normal to X�, and (iii) the prior information W is specified via (9). By virtue of (4),

(6), (10), (32) and the foregoing assumptions, the material derivative of L can be expressed as

L
H

¼ J
H

þ W
H

þRe½A
H


 ¼ Re

Z
Xobs

ðu� uobsÞ �W � u0 dX
�

þ ðq� qpÞ � G � qH þA
H
�
; ð47Þ

where u0 ¼ ou=os, and

q
HðCÞ ¼ ðqH0; q

H

1; . . . ; q
H

9Þ; q
H

sðCÞ ¼

�
R

C hn dCn; s ¼ 0

� 1
q0

R
Cðns � qsÞhn dCn; s ¼ 1; 2; 3

�
R

C

P3
j¼1

j 6¼s�3
ðnj � qjÞ2hn dCn; s ¼ 4; 5; 6

�
R

C

Q3
j¼1

j 6¼s�6
ðnj � qjÞhn dCn; s ¼ 7; 8; 9

8>>>><
>>>>:

ð48Þ

with qs (s ¼ 0; 1; . . . ; 9) given by (11) in terms of surface integrals over C.
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For the remote sensing problem of interest, it is natural to postulate that the support of f which is used
to ‘‘illuminate’’ the cavity lies entirely outside of XC, i.e. that f ðnÞ � 0 for n 2 C. With such hypothesis and
the required smoothness of the test function ~uu where

AðC; u; ~uu; f Þ ¼ 0 ) AðC; u; ~uu0; f Þ ¼ 0; 8~uu 2 V; ð49Þ
it can be shown by means of (32) and (40) that (47) reduces to

L
H

ðC; u; ~uu; f Þ ¼ Re

Z
X�
ðr � ~rr

�
þ ðu� uobsÞ �W þ qx2~uuÞ � u0 dX �

Z
CþS

~tt � u0 dC
�

þRe

Z
C
ðqx2~uu � u

�
� ~rr : ruÞhn dC

�
þ ðq� qpÞ � G � qH; ð50Þ

where ~rr ¼ C : r~uu, and q
H

is homogeneous in hn as specified by (48). Provided that ~uu is known beforehand,
formula (50) quantifies the sensitivity ofL due to prescribed shape perturbation, manifest in the boundary

distribution of hn.

5.2. Adjoint state

To satisfy the fundamental requirement that the shape sensitivity L
H

vanishes when trivial normal

transformation velocity (hn ¼ 0) is prescribed, the Lagrange multiplier ~uu must be chosen so that the first
term on the right-hand side of (50) equals zero. Such a requirement directly defines the (elastodynamic)

adjoint state ~uu as a solution to the variational problemZ
X�
ðr � ~rr þ ðu� uobsÞ �W þ qx2~uuÞ � u0 dX �

Z
CþS

~tt � u0 dC ¼ 0; ð51Þ

whose strong statement can be written explicitly in terms of the field equations

r � ~rr þWT � ðu� uobsÞ ¼ �qx2~uu;

~rr ¼ C : ~ee; n 2 X�;

~ee ¼ 1

2
ðr~uuþrT~uuÞ

ð52Þ

and boundary conditions

~tt ¼ 0; n 2 C [ S: ð53Þ
Given the primary field u for an assumed cavity geometry, the solution to (52) and (53) can be effectively
evaluated in terms of the regularized BIE (16) with the free field uFk taken as the response of a cavity-free
half-space due to internal sources ~ff ¼ WT � ðu� uobsÞ which are proportional to the misfit between ex-
perimental observations and forward predictions at measurement locations.
On the basis of (1), (25) and (52), it can further be shown that both the primary field and the adjoint state

satisfy the generalized radiation condition owing to the localized (i.e. finite) support of the respective body

force distributions, f and ~ff . With such observation and Lemma (26), the proof of the relationship (43)
(whose validity was assumed earlier) immediately follows.

5.3. Gradient formula

In view of (50) and (51) and the identity A
H

¼ 0, the material (i.e. shape) derivative of the cost function
(4) reduces to

J
H

ðC; f Þ ¼ L
H

ðC; u; ~uu; f Þ ¼ Re

Z
C
ðqx2~uu � u

�
� ~rr : ruÞhn dC

�
þ ðq� qpÞ � G � qH; ð54Þ
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where u and ~uu are the forward and adjoint solutions, respectively. This formula is similar to that obtained
by Bonnet (1995a) for a homogeneous full-space problem without an account for the radiation condition.

Despite its elegance, however, expression (54) may not be tractable within the framework of boundary

integral techniques owing to the difficulties associated with the evaluation of total displacement gradients at
the boundary (e.g. Sladek and Sladek, 1986). To circumvent such impediment, it is instructive to invoke the

concept of surface gradients (33) and observe that

~rr : ru ¼ ~rr : ðrSuþ n� ðn � ruÞÞ ¼ ~rr : rSuþ ~tt � u;n; ð55Þ

where u;n ¼ n � ru. By means of (55) and the Neumann boundary condition (53), material derivative (54)
can be rewritten as

J
H

ðC; f Þ ¼ Re

Z
C
ðqx2~uu � u

�
� ~rr : rSuÞhn dC

�
þ ðq� qpÞ � G � qH: ð56Þ

Finally, on expressing ~rr in terms of ~tt and ~uu;n for an isotropic elastic solid (see Bonnet, 1995b) (56) can be
shown to permit the representation

J
H

ðC; f Þ ¼ Re

Z
C

qx2~uu � u
��

� 2kl
k þ 2l

ðrS � ~uuÞðrS � uÞ � lðrS~uuþrT
S ~uuÞ : rSu

þ lðrS~uu � nÞ � ðrSu � nÞ
�

hn dC

�
þ ðq� qpÞ � G � qH; ð57Þ

which involves strictly the tangential derivatives that are readily computable from the nodal values of u and
~uu on C.

5.4. Additional considerations

To demonstrate the generality of (45) in view of the fact that the imaginary part of A is neglected in

constructing the augmented functional, it is important to observe that taking L in the alternative form

LðC; u; ~uu; f Þ ¼ Jðu; f Þ þ WðCÞ þ Im AðC; u; ~uu; f Þ
h i

; ð58Þ

yields the expression for J
H

which is identical to the formula derived earlier on the basis of (45). As a result
the shape derivative (57), with the featured adjoint state given by (52) and (53), intrinsically enforces both

real and imaginary components of the weak statement (44) as required by the inverse solution.

In situations when a set of K sequential seismic fields, generated by the respective time-harmonic body

force distributions f k (k ¼ 1; 2; . . . ;K) is used to illuminate the cavity, the foregoing developments can be
generalized by writing

JðC; f 1; . . . ; f KÞ ¼ 1

2

XK
k¼1

Z
Xobs

ðuk � uk;obsÞ �W k � ðuk � uk;obsÞdXn þ
1

2
ðq� qpÞ � G � ðq� qpÞ ð59Þ

and

J
H

ðC; f 1; . . . ; f KÞ ¼
XK
k¼1

Re

Z
C

qx2
k~uu

k � uk
��

� 2kl
k þ 2l

ðrS � ~uukÞðrS � ukÞ

� lðrS~uu
k þrT

S ~uu
kÞ : rSu

k þ lðrS~uu
k � nÞ � ðrSu

k � nÞ
�

hn dC

�
þ ðq� qpÞ � G � qH;

ð60Þ
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for the cost function and its material derivative, respectively. In (60), ½~uuk;~ttk � n � ~rrk
 denotes the adjoint
elastodynamic state associated with the kth seismic source where

r � ~rrk þ ðW kÞT � ðuk � uk;obsÞ ¼ �qx2
k~uu

k;

~rrk ¼ C : ~eek; n 2 X�;

~eek ¼ 1

2
ðr~uuk þrT~uukÞ

ð61Þ

and

~ttk ¼ 0; n 2 C [ S: ð62Þ

6. Computational treatment and results

In practice, the location and shape of C can be taken to depend on a finite set of design parameters,

p ¼ ðp1; p2; . . . ; pDÞ. With such assumption, the sensitivity formulas oJ=opd required for the minimization
ofJ can be obtained by setting s ¼ pd ðd ¼ 1; 2; . . . ;D) in (60). As long as the topological characteristics of
C are independent of s (e.g. CðsÞ remains simply connected), the evolving boundary element mesh repre-
senting CðsÞ can be created by interpolating a suitable set of parameter-dependent nodes xqðpÞ with fixed,
i.e. pre-defined mesh connectivity. For a generic point n 2 C and a given Q-node boundary element E � C,
the foregoing interpolation can be formally written as

nðpÞ ¼
XQ
q¼1

NqðgÞxqðpÞ; n 2 E; g 2 E0; ð63Þ

where NqðgÞ are the shape functions for the Q-node element with parent domain E0. With (63), the

boundary element solution is implemented on the basis of (16) in a standard fashion. For the gradient-

based back-analysis, each partial derivative oJ=opd is computed by applying (60) with the transformation
velocity h ¼ hd given by

hd ¼
XQ
q¼1

NqðgÞ
oxq

opd
ðpÞ; n 2 E; g 2 E0: ð64Þ

In this investigation, surface of the cavity is discretized via eight-node quadratic boundary elements (see,

e.g. Brebbia et al., 1984).

6.1. Gradient evaluation

To illustrate the performance of the adjoint problem approach, a numerical experiment was performed
with reference to the spherical cavity pictured in Fig. 2 whose design parameters, p ¼ ðp1; p2; p3Þ, represent
the position of its center. In this case, (64) reduces to

hd ¼ ed ; d ¼ 1; 2; 3: ð65Þ

The true and trial cavities are centered respectively at ptrue ¼ ð0; 0; 2aÞ and p0 ¼ ð2a; 3a; 6aÞ, where a de-
notes the radius of the sphere. The testing configuration shown in the figure has nine points; in succession,

each grid node is taken as a location of the vertical point source, with the remaining eight points used as
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receivers, so that a total of K �M � 3 ¼ 9� 8� 3 ¼ 216 synthetic observation data are generated for the

true cavity. The constitutive parameters of the half-space and the testing frequency are chosen such that

k
l
¼ 3

2
; �xx � xaffiffiffiffiffiffiffiffi

l=q
p ¼ 1: ð66Þ

To expose the performance of the adjoint problem approach, objective function for the trial cavity is

computed via (4)–(6) with W m
ij ¼ 106ladij and no prior information, i.e. W ¼ 0.

In Table 1, rows 3 through 5 show a comparison between the adjoint approach and central difference

estimates in terms of the sensitivities oJ=opd (d ¼ 1; 2; 3) for an assumed location of the trial cavity. The
step size for the finite-difference calculation is taken as Dpd ¼ 0:002a. As can be seen from the Table, there is

a reasonable agreement between the two methods. It should be noted, however, that the computational

time for the adjoint approach is approximately 1/6 of that for the central difference method in the problem

examined. For a general setting involving D design parameters, the foregoing efficiency ratio can be esti-

mated as 1=ð2DÞ since the central difference method requires 2D computations of the BIE (16), each cor-

responding to a different (perturbed) configuration of C.
In the foregoing example, the initial transformation velocity is restricted to a constant value, i.e. h ¼ ed

(d ¼ 1; 2; 3) as driven by the assumed parameterization. To investigate the performance of (60) under more

general conditions, the finite-difference and adjoint approach estimates of J
H

are further compared in the

last row of Table 1 for the case

hðnÞ ¼ sin
n1
a
sin

n2
a
loge

n3
a
e1 þ

n1n2
a2

sin
pn3
a

e2 þ
n1n

2
2

a3
e�n3=ae3; ð67Þ

Sources/Receivers
a

True

7a7a

Sensor layout: 7a
7a

0.5ω   = (µ/ρ)

Trial
λ, µ, ρ

ξ

1ξ

2ξ

i   tω

1

a

3ξ

a

ee3f=

Fig. 2. Spherical cavity and testing grid in a half-space with k=l ¼ 3=2.

Table 1

Gradient comparison: finite-difference vs. adjoint approach

Mesh 96 elements, J ¼ 61:62la3 294 elements, J ¼ 61:99la3

Method Central difference Adjoint Central difference Adjoint

1=ðla2ÞoJ=op1 0.8858 0.8761 0.8764 0.8779

1=ðla2ÞoJ=op2 1.4184 1.4322 1.4431 1.4350

1=ðla2ÞoJ=op3 )1.6642 )1.6549 )1.6715 )1.6703

1=ðla2ÞJ
H

2.2762 2.2363 2.2720 2.2543
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with the finite-difference approximation calculated as

J
H

� JðC þ sh; f 1; . . . ; f 9Þ �JðC � sh; f 1; . . . ; f 9Þ
2s

; s ¼ 0:002a: ð68Þ

From the Table, an overall agreement between the two methods should again be apparent.

6.2. Cavity imaging

The next example deals with the inverse scattering problem for an ellipsoidal void illustrated in Fig. 3,

whose semi-axes are aligned with the global coordinate system. For imaging purposes, the cavity is pa-

rameterized in terms of its centroid coordinates ci and semi-axes lengths ri (i ¼ 1; 2; 3) so that

p ¼ ðc1; c2; c3; r1; r2; r3Þ: ð69Þ

The true void geometry, with volume V true ¼ 4:072a3, is given by ptrue ¼ ð�4a;�2a; 4a; 1:8a; 0:9a; 0:6aÞ; its
trial counterpart is taken as p0 ¼ ð�2a; 0; 5a; a; a; aÞ. The cavity is illuminated in succession via nine point
sources according to the testing grid depicted in Fig. 2. For each incident seismic field, Cartesian com-

ponents of the surface motion are monitored at 64 control points uniformly spaced over the square ob-

servation area (14a� 14a) bounded by the source grid. Similar to the previous example, the constitutive
parameters and testing frequency are chosen after (66). From the problem configuration, one may observe

that the shear wave length of the illuminating seismic field is approximately twice the largest diameter of the

true cavity.
With reference to (4)–(6) and (9), the cost function J is computed with W m

ij ¼ 106ladij and the prior

information on the cavity geometry given by

qp ¼ ðV true; �; �; �; �; �; �; 0; 0; 0Þ;
G ¼ 2� 10�6l diag a�3; 0; 0; 0; 0; 0; 0; a�7; a�7; a�7

� �
;

ð70Þ

which indicate an opening of volume V ¼ V true whose principal axes of inertia are aligned with the global

coordinate system. In (70), indicated by the bullet symbol are the entries of q (with zero weighting coef-
ficient) on which no prior information is available, namely the cavity�s centroid coordinates and its prin-
cipal moments of inertia. One may also observe that the last three entries of qp, while formally constituting
the prior information, have been already assimilated into the problem via parameterization (69). As a
result, the only limitation directly enforced through (70) is that on the cavity volume, with the weighting

Fig. 3. Surface of an ellipsoidal cavity discretized via 96 eight-node boundary elements.
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coefficient (2� 10�6l) chosen so that the prior knowledge component in (4) is an order of magnitude larger
than its misfit counterpart, J , at p ¼ p0.
To simulate the presence of modeling and measurement uncertainties, synthetic observations of the

ground motion (uobs) are contaminated with the aid of a perturbation factor ð1þ .Þ applied to their

scattered component, where . is a random variable uniformly distributed over the interval ½�0:01; 0:01
.
The minimization procedure, employed in this study, revolves around an unconstrained quasi-Newton
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Fig. 4. Evolution of design parameters in the minimization process.

Fig. 5. Projection of true and trial cavities on the horizontal plane.
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descent method with a quadratic line search algorithm, where the Hessian operator is updated via the

BFGS formula (see, e.g. Nocedal and Wright, 1999). With reference to the results obtained in Section 6.1,

the computational effort is reduced by a factor of 12 by estimating the sensitivity functions oJ=opd
(d ¼ 1; 2; . . . ; 6) via an adjoint problem approach.
Fig. 4 illustrates the iterative process of mapping the featured cavity, ptrue, starting from p ¼ p0. As can

be seen from the figure, the optimization procedure converges to the global minimum after approximately

thirty major iterations. For clarity, Fig. 5 depicts the imaging procedure geometrically in plane view.

It should be noted that the success of the foregoing method is strongly dependent on the choice of a

starting point, a pitfall that is common to all gradient-based algorithms. Such a deficiency could be alle-

viated by restarting the search procedure from a variety of initial points or, alternatively, by selecting p0

using the concept of topological derivative TðxÞ (Sokolowski and Zochowski, 1999; Garreau et al., 2001),
which furnishes an information about the variation of the cost function J, when a spherical cavity of
infinitesimal radius is introduced at x 2 X. A more robust, yet reasonably efficient minimization algorithm

could be devised by employing a random global search (e.g. a genetic algorithm, Gen and Cheng, 2000),

followed by the descent procedure described herein.

7. Conclusions

In this communication, the problem of mapping three-dimensional cavities in a semi-infinite solid from

surface seismic measurements is investigated via a regularized BIE method. With the solid modeled as a
uniform elastic half-space, the inverse problem is reduced to the gradient-based minimization of a misfit

between the observed surface motion and its elastodynamic prediction for an assumed void location. In the

formulation, necessary sensitivities of the predictive BIE model are evaluated via an adjoint problem ap-

proach and an Eulerian-type continuum kinematics description. A rigorous treatment of the radiation

condition for an elastic half-space, which is essential to both forward and inverse scattering problems

involving semi-infinite solids, is elucidated. The proposed format of the cost function, which includes

weighted measures of (i) observation-theory misfit and (ii) prior information, further lends itself to sto-

chastic generalizations such as the maximum likelihood inverse theory (Tarantola, 1987). Numerical results
show that the adjoint problem approach produces sensitivity estimates that are consistent with their finite-

difference counterparts, while reducing the computational time by a factor of 2D, where D is the number of

design parameters used to describe the cavity geometry. Beyond serving as an effective tool for the three-

dimensional imaging of voids concealed by a uniform semi-infinite solid, the analysis furnishes the basis for

extensions of the methodology to problems involving solid inclusions in layered media, with potential use in

meso- and micro-scale material characterization, defense applications, and the diagnosis of medical ail-

ments. It is also shown that the elastic waves are capable of resolving inhomogeneities smaller than the

predominant wave length of an illuminating wave field, a situation that is considered to be beyond the
resolution limits of stress-wave (e.g. ultrasonic) material testing.
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Appendix. Symmetry of the fundamental solution

By means of the method of displacement potentials and the Hankel integral transform (see Pak, 1987), it

can be shown that the time-harmonic displacement fundamental solution ûuki for a homogeneous elastic half-
space X permits the integral representation

ûuk1ðx; y;xÞ ¼ 1

4pl
dk1

Z 1

0

ðc2
�

þ c1ÞnJ0ðrnÞdn þ ðdk1 cos 2h þ dk2 sin 2hÞ

�
Z 1

0

ðc2 � c1ÞnJ2ðrnÞdn � 2dk3 cos h
Z 1

0

c3nJ1ðrnÞdnÞ
�
;

ûuk2ðx; y;xÞ ¼ 1

4pl
dk2

Z 1

0

ðc2
�

þ c1ÞnJ0ðrnÞdn þ ðdk1 sin 2h � dk2 cos 2hÞ

�
Z 1

0

ðc2 � c1ÞnJ2ðrnÞdn � 2dk3 sin h
Z 1

0

c3nJ1ðrnÞdnÞ
�
;

ûuk3ðx; y;xÞ ¼ 1

4pl
dk3

Z 1

0

X2nJ0ðrnÞdn
�

þ ðdk1 cos h þ dk2 sin hÞ
Z 1

0

X1nJ1ðrnÞdn
�
;

ðA:1Þ

where x is the circular frequency of vibration, k ¼ 1; 2; 3 denotes the force direction, and x and y are the
receiver and source locations, respectively. In (A.1), d denotes the Kronecker delta; Jn is the Bessel function
of order n, and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ2 þ ðx2 � y2Þ2

q
; cos h ¼ x1 � y1

r
; ðA:2Þ

with the kernel functions are given by

c1ðn; x; y;xÞ ¼ n2

2ak2s
e�ajd1j � b

2k2s
e�bjd1j � 1

2k2s

RþðnÞ
R�ðnÞ

n2

a
e�ad2

�
þ be�bd2

�

þ 2n2bðn2 þ b2Þ
k2s R

�ðnÞ e�ðbx3þay3Þ
�

þ e�ðby3þax3Þ
�
;

c2ðn; x; y;xÞ ¼ 1

2b
e�bjd1j
�

þ e�bd2
�
;

c3ðn; x; y;xÞ ¼ sgnðd1Þ
n
2k2s

e�ajd1j
�

� e�bjd1j
�
þ n
2k2s

RþðnÞ
R�ðnÞ e�ad2

�
þ e�bd2

�

� 2nðn2 þ b2Þ
k2s R�ðnÞ abe�ðbx3þay3Þ

�
þ n2e�ðby3þax3Þ

�
;

X1ðn; x; y;xÞ ¼ �sgnðd1Þ
n
2k2s

e�ajd1j
�

� e�bjd1j
�
þ n
2k2s

RþðnÞ
R�ðnÞ e�ad2

�
þ e�bd2

�

� 2nðn2 þ b2Þ
k2s R�ðnÞ n2e�ðbx3þay3Þ

�
þ abe�ðby3þax3Þ

�
;

X2ðn; x; y;xÞ ¼ � a
2k2s

e�ajd1j þ n2

2bk2s
e�bjd1j � 1

2k2s

RþðnÞ
R�ðnÞ ae�ad2

�
þ n2

b
e�bd2

�

þ 2n2aðn2 þ b2Þ
k2s R�ðnÞ e�ðbx3þay3Þ

�
þ e�ðby3þax3Þ

�
;

ðA:3Þ

1522 B.B. Guzina et al. / International Journal of Solids and Structures 40 (2003) 1505–1523



where d1=2 ¼ x3 � y3 and

R� ¼ ðn2 þ b2Þ2 � 4n2ab; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � k2p

q
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � k2s

q
; kp ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

k þ 2l

r
; ks ¼ x

ffiffiffi
q
l

r
: ðA:4Þ

One may observe that the kernels (A.3) are characterized by intrinsic symmetries

c1ðn; x; y;xÞ ¼ c1ðn; y; x;xÞ; c2ðn; x; y;xÞ ¼ c2ðn; y; x;xÞ;
c3ðn; x; y;xÞ ¼ X1ðn; y; x;xÞ; X2ðn; x; y;xÞ ¼ X2ðn; y; x;xÞ;

ðA:5Þ

with respect to the source-receiver arrangement. With the aid of (A.2) and (A.5), it can be directly verified

that the displacement Green�s functions (A.1) exhibit spatial reciprocity wherein

ûukj ðx; y;xÞ ¼ ûujkðy; x;xÞ; x; y 2 X; j; k 2 f1; 2; 3g: ðA:6Þ
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